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Consiliul de Administratie al Universitatii Tehnice din Cluj-Napoca

Subsemnatul Turcu Antoniu Claudiu, avand functia de Sef lucr. Dr. Ing. Ref. ec., in cadrul
Departamentului de Electroenergetica si Management, contest prin prezenta avizul Biroului juridic
referitor la analiza dosarului de concurs pentru ocuparea postului de Conferentiar, poz. 8, din
urmatoarele considerente:
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Avizul negativ se refera la urmatoarea situatie de fapt: numarul de lucrari indexate in baze
de date ISI este 6 si nu 7, care este minimul necesar pentru a fi eligibil.
Lucrarile indexate ISI atasate dosarului meu este in numar de 8, cu urmatoarele mentiuni:

Una din lucrarile indexate ISI nu se regaseste in baza de date WOS, desi lucrarea respectiva
este citata de alte 3 lucrari de specialitate, ale caror copii le atrasez prezentei;

Cealallta lucrare stiintifica la care fac referire a fost transmisa jurnalului Technical Gazette
- Tehnicki Vjesnik in anul data de 09.12.2014. A trecut de toate comisiile de revizuire,
versiunea finala fiind publicata pe pagina personala a unuia din autori in data de
06.09.2017. Din ultimele discutii purtate cu chairman-ul si cu editorul sef al jurnalului,
lucrarea urma sa fie publicata in numarul 3 din iunie 2019, din acest motiv lucrarea
regasindu-se in lista mea. Din motive independente de mine, lucrarea nu a fost publicata in
acest numar, avand promisiunea ca pana la data de 01.07.2019 sa am, oficial, confirmarea
de publicare primita de la consiliul editor. Atasez, de asemenea, dovada de revizuire a
prezentei lucrari la care fac referire.

In speranta unui raspuns favorabil, va asigur de toata consideratie mea!

Cluj-Napoca, Sef lucr. Dr. ing. Ref. ec. Aptoniu Cl TURCU
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Numerical Simulations for Estimating the
Effective Permittivity of Matrix Dielectric
Mixtures

R. Cret and L. Darabant

Abstract— The paper presents the result of the numerical and
analytical computation of effective permittivity of some matrix
mixtures, considering different concentrations, size, shapes,
distances and orientation of the inclusions in the host media. The
numerical computation of the effective static permittivity ef is
done using the Finite Element Method (FEM), that will alow us
to consider these influence factors. We performed a comparison
between numerical and analytical results and we emphasize a
formula for estimating the effective permittivity for this type of
mixtures.

Index Terms— effective permittivity, composites, numerical
simulation

1. INTRODUCTION

HE wuse of composite materials for electrical,
mechanical and thermal applications was extended,
especially due to their improved mechanical properties (a
unique combination of low density and high mechanical
resistance). Their main advantage consists in the possibility of

designing them for special purposes. Composite materials
continue to evolve, due to technological development that
leads to an improved and more precise manufacturing process.
A rising importance is now attributed to the study of their
electrical properties, as they can be used as dielectrics in

insulating systems. Since the size and weight of the insulation
system plays an important role in its cost, creating a light and
cheap composite, with the same electrical properties as
traditional materials, would represent a major achievement.
The most studied composites are binary mixtures,
composed by a polymer that represents the matrix, and
organic or non-organic inclusions, spatially distributed in the
host media. If there are analytical formulas available to
estimate the effective permittivity for a reduced volume

percent of the inclusions in the mixture, for a large amount of
inclusions — that represents the case of polymer composites
used in insulating systems — a numerical simulation is required
to asses their behavior. Using MAXWELL 2,3D, created by
ANSOFT corporation, one can compute — using the Finite
Element Method (FEM) — the electric field and electric
displacement in any point of a domain, making it possible to
asses the effective (real) permittivity of the mixture, - €.

94

The literature [1, 2, 3, 4, 6, 9, 10] shows that effective
permittivity depends not only on the shape, size and distance
between inclusions, but also on their orientation with respect
to the applied electric field. The simulations performed for
matrix mixtures also considered these influence factors.

II. COMPUTATION METHODS FOR STATICEFFECTIVE
PERMITTIVITY

The key parameter to be computed in order to determine
dielectric properties of mixtures is the electric field
distribution E(x ,y, z) in the computation domain. The most
appropriate method to perform this numerical computation for
dielectric mixtures is the Finite Element Method (FEM) [1, 3,
7, 10].

Once we know the distribution of the electric field, this can
be used in several ways to compute the effective permittivity.
One approach is based on Ampére’s law, given by:

V((Z—ja/mso)_E= 0,

)

valid for a time variable electric field, E = Eo exp (jot).
Solving equation (1) for the electric field E(x,y) — in 2D —

or E(x, y, z) — in 3D - the effective permittivity is obtained as:
- Method M1: knowing the average values of the electric

)

field £ and of the elegn}iqdisplacement D:
e =

D E

s ¥)
- Method M2: from the electrostatic energy balance:
1, ~ 1 1~~ 3)
E _ .
2 v = [, EDd~
Inthese equations, .~ representsthe computationdomain,
and:
“E =1 .[E’d 5=%\18E-d “
-~
N -~
//\

I1I. ANALYTICAL METHODS FOR ESTIMATING THE EFFECTIVE
PERMITTIVITY

The computation method for the average (effective)
permittivity of the mixture is chosen as a function of the
mixture’s type (statistic or matrix) [3, 4, 5, 7, 8]. Most
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formulas are based on the theory of the average field. Among
these, we used the following formulas to compute the
permittivity of the matrix mixture:

Eef
-8 —&f _(1_g).3/— (Bruggerman 5
g2 — &1 ( %) £1 &8 ) )
- e = el mq(e2-&)  “(Sillars)y  (6)

< mea+(e2-a)(- q)hog

g =¢ (52 + 231)““ 2‘](52 = 51)(Maxwell—Wagner) @)
9 £, +2¢ —Q(Ez"‘sl)

In the equations above, q represents the  volume
concentration of the inclusions, &g €, € — the relative
permittivities of the mixture, the host media and inclusions

and m — a parameter equal to 3 for spherical inclusions or 6
for elliptic ones.

IV. GEOMETRICAL MODEL

The selected computation domain is the dielectric of a
plane capacitor placed inside a homogenous field. The
boundary conditions attributed to the model are those in figure
1. The influence of the distance between inclusions upon the
effective permittivity of the mixture was studied using the
model in fig. 2, where the host media is a rectangle of 50x25
pm and the relative permittivity €,=2.25. The inclusions are
represented by infinitely long cylinders, of radius » = 2 pm
and £,=3.78, the distance between them varying from 0 to 24
um (d = 12r).

. _

anO

Vi=10V V2=0V

oV _
6n_0

Fig. 1. Boundary conditions attributed to the computation model

£,

&

il s

Fig. 2. Dielectric mixture with two cylindrical inclusions. He distance
between them is: a) O ym; b) 24 um

For the 2D case, we considered ordered matrix structures,
having the same matrix of the host media (16x16 elements)
but with different forms and concentrations of the inclusions.

We considered cylindrical and ellipsoidal inclusions,
according to models in figure 3 — a and b.

el [0/0]070
©lejoloo|e “.‘".
S 1010700
ocejecees | O O O O

b.

Fig. 3. Fragment of the modeled matrix structures, with: a—cylindrical and b
—ellipsoidal inclusions

The concentration of the inclusions was computed as the
ration between the area of the inclusion and the area of the
matrix square that hosts it, with formula g ,=zr? 2 for

cylindrical inclusions and g, = 7 ab /12 for ellipsoidal ones.

For ellipsoidal inclusions, figure 4 shows the variation of
the small semi-axis of the ellipse as a function of the large
semi-axis, b = f{a) for different values of the concentration.
This allows us to easily establish the size of the ellipse when
the concentration changes. The graphic was established
considering a unit side of the square of the host matrix.

a.5
a.7
a4 [ 0.8
as k- a.5
- a.4
0.2 0.3
ag.2

.1 P

o.1

a

Fig. 4. Variation of the small semi-axis of the ellipse as a fuction of the large
semi-axis for different concentrations

In 3D we modeled matrix mixtures with spherical, ellipsoid
and cylindrical inclusions. The models that we studied are
those in figure 5.
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Fig. 5. The mode! of the mixture, with a- spheric, b — ellipsoide and ¢ — cylindric inclusions

50
A

between the inclusion is expressed in terms of multiples of the
V. RESULTS ANDDISCUSSIONS inclusion’s radius (7=2um). The variation of the effective
The results of the numerical study regarding the influence ~Permittivity of the mixture as a function of the distance
of the distance between the inclusions upon the effective between inclusions is given in figure 6.
permittivity of the mixture with two cylindrical inclusions —
the model in figure 2 — are given in table 1. The distance

TABLE L.
VARIATION OF THE EFFECTIVE PERMITTIVITY WITH DISTANCE BETWEEN CYLINDRICAL INCLUSIONS
d 0 r 2r 3r 4r Sr 6r
€ 2.2780936 | 2.2770272 2.2767622 2.2767622 | 2.2767829 2.2768781 2.2770056
d Tr 8r 9r 10r 11r 12r
€of 2.2772030 | 2.2774020 2.2776700 2.2779325 | 2.2782590 2.2785934
2279 -
22785 - Foad
= /
£ 2278 | =
& o278 . -
2277 w : .
22765 M i |
0 2 4 6 8 10 12 14

Fig. 6. Variation of the effective permittivity with distance between the inclusions

Numeric computation of the effective permittivity was draw — figure 7 - the variation of the effective. permittivity
performed for matrix structures where the host media has as a function of the angle between the direction of the electric
dielectric constant £=4, inclusions £=6,5 and the side of the field and the large semi-axis of the ellipse — defined in figure
square / is 20 pm. The computation methods for &« in 8.
electrostatic regime were: M1 — with equation (2) and M2 — For 3D modelling we considered models in figure 5, with
with equation (3), using MAXWELL 2,3D software. the same concentration of the inclusions, ¢i = 0,3. For

Numerical results obtained for mixtures with cylindrical ellipsoids and cylinders, we also considered the two main
inclusions of different concentrations (figure 3 a, b) are given directions of applying the external electric field, which is
in table 2. They were compared with those computed parallel or perpendicular to the axis of the inclusion.
analytically with formulas (5), (6), and (7).

Based on the analysis of the results in table II, one can
conclude that the numerical values are closes to those
computed with Maxwell-Wagner formula.

For ellipse inclusions and a concentration of g =0,3 we
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ANALYTICAL AND NUMERICAL VALUES OF THE EFFECTIVE PERMITTIVITY FOR MATRIX MIXTURES WITH CYLINDER INCLUSIONS, FOR DIFFERENT CONCENTRATIONS

TABLEII

Erori Brugermenn-M1 . Maxwell-

q (Errors) Sillars Wagner M1 M2
0.1 0,007795 4,2240 4.2105 4.1946 4.1510
0.2 0,015241 4,4423 4.4285 4.3977 4.3127
0.3 0,021452 4,6528 4.6545 4.6114 4.4892
04 0,026104 4,8520 4.8888 4.8367 4.6836
0.5 0,028625 5,0344 5.1320 5.0752 4.9002
0.6 0,028519 5,1901 5.3846 5.3284 5.1457
0,7 0,016232 5,2102 5,6470 5,5999 5,4329

0.785 0,017321 5,3219 5.8783 5.8467 5.7193
Analytical methods Numerical methods
411
4.105 IL—E-\L
41 S
4,085 . - .
408 T
408 ] —m— epsl
4075 ; ops2
407 :
4,085 -
406
4055 ™ T ¥ T 7
20 L) B0 B 100

Orientation angle [degrees]
Fig.7. Variation of the effective permittivity of the mixture with respect to the orientation angle

Fig. 8. Defining the orientation angle of the ellipse with respect to the external
electric field

The effective permittivities of the mixtures, computed
numerically, are given in table III. Depending on the
orientation, errors are equal to 1,739% for cylindrical
inclusions and 0,021% for ellipsoidal ones. Therefore, we can
establish that the influence of the orientation of the inclusion
in the applied field upon the permittivity is stronger for

cylindrical inclusions.
TABLE III
EFFECTIVE PERMITTIVITY OF MATRIX MIXTURES WITH SPHERIC, ELLIPSE AND
CYLINDER INCLUSIONS, FOR TWO DIRECTIONS OF THE APPLIED ELECTRIC FIELD

In case of dielectric matrix mixtures, the influence of

concentration,

size,

shape,

distance and orientation of

inclusions on the effective permittivity of the binary mixture is
confirmed. One can conclude that the most significant is the

a7

influence of the orientation of the inclusion with respect to the
applied electric field, in case of elliptic inclusions, but
especially in case of cylindrical inclusions.

The results obtained with the numerical computation
method M1 are closer to those computed with Maxwell-
Wagner formula, the one indicated in the literature for
estimating &y for this type of mixtures.

VII. REFERENCES

[1] C. Brosseau, A. Beroual, “Effective Permittivity of Composites with
Stratified Particles”, Journal of Physics, 2001.

[2] P. Clauzon, L. Krahenbuhl, A. Nicolas, “Effective Permittivity of 3D
Lossy Dielectric Composite Materials”, IEEE Transactions on
Magnetics, vol. 35, nr. 3, 1999.

[3] R. Cret, “Contributii la studiul dielectricilor neomogeni”, Tezd de
doctorat, Cluj-Napoca, 2004,

[4] R. Cret, L. Cret, “Numerical Computation of Dielectric Permittivity of
Mixtures”, J. Optoelectronics and Advanced Materials, nr.3, 2004.

[5] R. Cret , E. Simion, M. Plesa, D. D. Micu, “Numerical Modelling of
Non-Homogenous Dielectrics with Very Different Permittivities of the
Components”, Proceedings of the Conference Metamaterials 2007,
Rome, Italy,. 2007.

INCLUSION’S TYPE Ml M2 [6] R. Cret, A. Turcu, D. Stef, D. D. Micu, “Study of the Factors that Affect
Sphere 4.62973539 4.53322938 the Effective Permittivity of the Dielectric Mixtures”, Proceedings of the
B=0" 459880429 4464654958 International Conference , Materials for Electrical Engineering” - 6"
: —o7 Edition of MmdE, 2008.
Cylinder f= 90" 1.67800461 (.604837551 [7] R. Cret, L. Déaribant, A. Turcu, M. Plesa, “Numerical Simulations ang
B=0° 61337827 #.535562429 Experimental Analysis of Polimer Based Non-homogeneous'
Ellipsoid ﬂz 90° 1.61230341 4.533102822 Die}fctrics”, J. Optoelectronics and Advanced Materials, nr. 5.nov.
2009,
[8] B. M. Tareev, “Fizika Dielectriceskih Materialov”, Energoizdat,
VI. CONCLUSIONS Moskva, 1982.

[9]1 E. Tuncer, S. M. Gubanski, “Dielectric Proprieties of Different
Composite Structures”, SPIE, vol. 4017, 2000,

[10] E. Tuncer, Y. V. Serdyuk, S. M. Gubanski, “Comparing Dielectric
Properties of Binary Composite Structures Obtained with Different
Calculation Tools and Methods”, CEIDP, Canada, 2001.



666T AV :paysliqnd T:Med 9ZzZT-£27¢1:sa8ed €:9nSS| GE :awinjop SOILINOYIN NO SNOILDVYSNY¥L 3331
333j :(s)4osuodg
866T ‘€0-TONNI

(uon23jjo)  :31eQ YNOZIYY ‘NOSINL :uoned07 (86 2432 3331) uonendwo) pjai4 2132uZewo13133)3 uo DUBIBYUO0) FI3| JeluUIg Y38 :80udidjuo)

840D 92U3I2S J0 qo Woly) v ‘Se|odIN {3 ‘lynquayeuy) ‘g ‘uozne)) :Ag
CT :pay) sawn) sjelarew a)sodwod 21u33191p Asso) g€ jo Ainmwiad anippayg €

(uonaajjo) 100Z:P3ysiiqnd A SAHA I

810) 23U317S JO qopm woy) J NY3ssoyg :Ag
T :pa) sawy [G19ejienerou] oy ¢

(uo1323)j02 T00Z :paysiqnd  SAHd 1ddV 1

810D 92u313$ JO qap wouy) J NY3SS0yd Ag
T:payd sawy [d19ejiene jou] L T

<5pJ033y pajejay puid 1517 paxie 03 ppy ""Hodx3 a8ed 1919s )

SI0W™" STUNLIXIW J14.13371310 IHL 40 ALIAILLINYAd IAILDI4T IHL JFONINTANI LYHL SYOLDVL FHL 40 AQNLS :woid
{uo1133)j0) 8102 93U3IIS JO o wioy)

YT :S90U34d)3Y paM)

a1eAlEn <) 92U3IDS JO g3

IIUBIIS JO GIM



(uonaajjod
9102 22U3IIS JO GIM Wol)
€L :payd sawit

(u01323}j0)
9100 33U3IIS JO GaM Woly)
LE pay) sewlll

(uonajjod
8107 93U312S JO qaM Wody)
T :payd sawil

(uo133j)0)
9407 33UBIIS JO g3 Wodj)
Z:pau) sawil

(u0133j)0)
8107 33U3J1S JO oM Wodj)
 :paud sawL

(uo33)j0)
2407 93UBIIS JO G Wody)
Z:pay) sawiL

0007 AVW :paysiiqnd 80ET-€0ET 'sd8ed € :anss| 8g :dwnjoA HONISNIS ILOWIY ANY IONIIDS0ID NO SNOILOVYSNVYL 333!
I ‘USUDISOMIN {HY ‘BJOAYIS Y ‘UauIesiIe) :Ag
poylaw qLd4 @Y} Aq uonepijeA jeardawny :sainixiw jo Ayanuiad aandey]

a DRISqY MIIA

¢00¢ T 234 :payshand

#-76.,00(Z0)80¥S-SZ00S Ild -19qWINN 3PPIUY 06¥Z-E87C 'S98ed ST :@Nnss| L€ :BWNIOA NILITING HOYYISIY STVINILYIN
4 ‘nsH 10 ‘ued {10 ‘Bueny :Ag
K>uanbaay anemoudiw Je waisAs J1wesdd (€)011eIx-£01L(50°00056°08 W) (x-T) jJo sanuadoud s1u3d9)81Q

€161 :paysiiqnd 9 :BWNJOA g JINVHID

a9 NOXIa :Ag
[e1qe)teae Jou] oL

¥00¢C -paysiiqnd  SISIHL
¥ 1340 4g
[s19e)ieae jou] @)L

a 10R1ISQY MIIA

¥00Z d3S :paysiiqnd 8+0T-GHOT :sd8ed € :@Nss| 9 :dWNJOA STYIYILYIN AIINVAAY ANV SIINOY.LDITI0OLAO 40 TYNINOr
$00Z ‘8T-9 AVW :918d VINVIWOY ‘1S9J8y2Nng :u011ed07 S31UYID)0.303|3 40} S|eudjey uo doysyJop |euoiieulalu] Yy :aduaiajuo)

7910 &Y ‘104D Ag

saJnxiw Jo AYARywIRd 314393)91p Jo uonendwod jedLdwWNN

(e3ep jeuonippe moys]

16007 :paysiand LE6-TE6 :S93kd S|eilaley padueApy pue siuoJt}2a)soidQ Jo jeuwsnor
1|39 £y ‘nouny ¢ ‘queqese( Sy 4] :Ag
$511323)31p snoauaBowoy-uou paseq Jaujod jo sisAjeue |ejuauiiadxe pue suoijeNWIS jesuswny

a RIISqY MIIA



(u0123jj0)
8402 92U3IIS 40 q3M Wody)
T:pa)Dsawll

(uondajjod
9102 33U3IIS JO goMm Wody)
Z:payd sawll

(uoi9)j0)
9107 33U3IS JO goMm woly)
¥8T :p3)1) sswitl

(uopajjo)
8402 353U3I2S JO gam woly)
Z:paud sawll

(uon2ajjod
240) mutm.Gon Qm\S EO‘E
60T :pau) sswil

T00T -Pa3ysiiqnd 40dd J1IMLD3131d dJWOD
epeue) :Uoi3ed07 ddi3D :92uUaiajuo)

‘W S ‘psueqno Ca A YnApaas 3 93aun] :Ag
SPOYISW pUe S]00] uoije|naje) Jualayid YHUm pauleiqo sainyniis ayisodwo) Aieuig jo saiuadoid s14329)91q Suedwo)

a JOeIISqyY MaIA

666T :paysiqnd cyT-9€T :s88ed LTOF :BWNJOA (3IdS) SYIINIONI

NOILYLNIWNYLSNI T¥I1LdO-OLOHd 40 ALID0S FHL 40 SONIQIII0Yd :$213S }008 STVYLSAYD AINOIT ANY SHIWATOd
Jadey) puejod J14S 31dS ‘up4 A10jeg ueyals (say 19 wwo) ‘dig jezipiepuels 3 A3d S9Y VSN ‘A9d

1 say dsouay YO ueadoun3 4ysn ‘SAYd Isu| ‘Zpo aun Yoa) ‘s1awh|od ISu| ‘ZpoT Alun YoaL fIsu] xaL ‘Zpo Alun yaaL (s)iosuods
866T ‘17-¥T d3S 218 ANVT10d ‘MHYAZIZS :u013e207 sjeIshi) pinbi] pue siawA|od Uo 32UaIajuU07) :2OUIBJU0D)

S ‘dfsueqno {3 4a0uny :Ag

sa.n3oniys ajisodwod Juasayip jo seadoad ouye)aiq

a 1JR1ISqY MIIA

€00t

100:paysiiqnd  878-608 :sa8ed §:anss| :WNjoA NOILYINSNI T¥2IYLD3 13 ANY SDI¥123731a NO SNOILIOVSNYYL 333
NS ‘Disueqno AL YNApIss {3 “ooun] :Ag

Sunepop pue ssipadoad jes13da}3 isaanixiw 1433210

7861 :paysiiqnd MS3D1H103731Q YAIZI4
We A334v1 Ag
[e1ge)ieae Jou] @)L

696T :paysiiqnd %-1.8:s98ed ¢€:2nsS| 98T :BWNJOA MIIATY TVIISAHd
WY ‘NILYVI :Ag

STYLSAYD FUNLONYLS-ANOWYIAQ 40 SNOILVHEIA 3D111Y1 404 TIAOW SNINIFUOS J1dLI3131d

a DeNSqY M3IA

4!

€T

T

T

0T



e @ SN Mo)|04 J21I3|SM3U BIUBIDS JO Gap 33 10y dn udis

Aorjod ao0)

4 1 )0

T

1BWa)RIS AdeAlld

asN JO sWla]

2o0u1yduidor

91eAlIB) 6TOC @

uonEAOUU| SUIIRID}2IDY

ajeALie])

"3]qejiene aINPNNS = g e ADY

517 PYIB I 03 PPY

~10dx3

a3ed 199)3S 0




3331 :(s)1osuods
866T ‘€0-TO NN
(uon29)jo)  :31eQ YNOZI¥Y ‘NOSINL :u0ied07 (86 243D 3331) uoneindwio) piat4 d118uUSewW043d9)3 U0 IUIBHUO) JIT| |eIuUdlg Yig :9dUSISU0)

9402 32U31IS JO Gap) Wody) Vv ‘SejOdIN 3 lynquayesy {4 ‘uozned :Ag
CT:pajd sawil sjeulew a3isodwod d13IB)RIP ASSO) € Jo Apamwaad aaday3 €

(uo1323)j0) T00Z :paysiiqnd sd1sAyd jo jeusnor

810 32U3IS JO qap) Woly) 'V ‘lenolag ) ‘neassoug :Ag
T :p3y) sswll s3)a1ued paynens yum sayisodwo) Jo ApamiuIad anmdey3 g

[e3ep jeuonippe moys]

(uon3})0) s315Ayd paljddy jo jeusnop
8102 92UBIIS JO qam Woly) 1213 SV ‘QIUBION T “10d £ ‘paeyduelg :Ag
T :payD sawy] POYISN XLIJRI SUIT UOISSIWISURLL Y3 YHM S2INIXIW 214323)31p Jo AJiAnwaad aAldaye ay) jo uoneuiwidleg 1
< SpJ023Y pajejay puid 117 paxiey 03 ppy “*podx3 aded 19195 )

41440 I | 4
IO NJDU] JO SdIslialdeley) JUIBW 039 3Y] 0] Paje|ay si10}oe4 aos Jo adouanjju] oyl Jnoge suoljelapisuo) :wold4

(u01123]j02 3102 32UBIDS JO GaM WOLY)

0T :S3DUIISY PaY)

aeniely <) 92UDI2S JO go

3UBNS JO gBM



(uonajjo)
8107 32U312$ JO qoM Woly)
T:payd sawiy

(uond3jjod
8102 92UBIIS JO GaM Woly)
T:pajyd sawly

(u01123}10)
9102 32UIIIS JO o woly)
T :payd sswiL

(uonaajjod
9102 9IUBIIS JO qOM Woly)
¥ 1pay) sewiL

(uondajjod
910D 33U3IIS JO g3 Woly)
C:payd sawll

yepzio8iau] :1aysngnd

786T :paysliqnd AOjeLIS}eW OAYSIDUIID)3IP BYizZi4

‘W'g ‘Asade) Ag
[@1qejteae Jou] D)1

(eep jeuoiippe moys]

0TOZ :paysiiqnd 88€-S8¢€ 'sd8ed S3A'S LNIOT 3331 d

(IWLNS) SuiBexded o1u0.419)3 ul A3ojouydsa) pue udisag Jof wnisodwAS Jeuoneuldu| YyigT 3331 943 Jo Suipasdold :@3usidjuo)
"1233 £Q ‘snatlad Y ‘394D ) ‘sealed :Ag

POYIa| SjuawWwa|3 aul4 Suisn saunixip d1323)31Q Jo uonenwis pue 3uljapon

sSald apel3)ag Jo ANsIaAIUN Iayslignd
600Z :paysliqnd sjeualen aysodwo) jo 3unepojy senaldold 214399)91Q
‘g ‘onsey W ‘dnojnuiq :Ag

[319e)iene Jou] )L

a 1IRAISAY MIIA

¥00Z 43S :paysiiqnd 8v0T-SHOT :S98ed €:9NSS| 9:BWNJOA STYIMILVIN IDNYAAY ANY SIINOY¥LDITIOLLO 40 TYNMNOr
007 ‘82-92 AYW :21e@ VINVINOY ¥s2Jeydng :uonedoT sa1uyda)o3da]3 Joj sjealejy uo doysyJop |euciieualu| Yy :2ouaiajuo)

79240 &Y 1810 :Ag

sa1nxjw jo Ayawaad 514399)31p jo uoneindwiod jesuawnN

[e3ep jeuonippe moys]

600Z :paysiiand L£6-7£6 :S38ed S|eLalejy pasueApY pue $31U04303)301dQ jo jeuinor
‘1213 ©'v ‘naing ¢ Queqeleq Y 3940 :Ag
{sa1323)31p snoauaSowoy-uou paseq sawijod jo sisAjeue jejuswiadxa pue suonejnwis jesswny

a 1DRISqY MIIA

66T AVIN :paysiiqnd T:Med 9zZT-€ZZT:s98ed €:9Nnss| G :WNIOA SIILINOVIN NO SNOILDVSNYML 333!



f

‘9]ge]leAe 24N1ONAIS = *gf e ADY

4 1) 1 [ 4

Is11 parIen 03 ppy “*Hodx3 a8ed 10995 )

TOOZ -Paysiignd d0¥d J14123731d dWOD

(uo1329jj0) BpEUR) (UO[IEI0T 4|3 :9oUdIdu0)
210D a3UdI3S JO GaM Woly) WS ‘Msuegno CA A YnApaas 3 4aduny] :Ag
Z :pay) sawil SpPoOYla| pue sjoo) uonendje) JuaLayig Ym pauleiqQ sain3donns ayisodwo) Aseuig jo saipadold au3d9)91q Suedwo) o1

a DRIISQY M3IA

¢00¢
(uonaajjo) 100 :paysiiqnd 878-608 :sd3ed G :@nss| 6:@BWNOA NOILYTNSNI TYII4.LD3TI ANV SDIM1D3T31A NO SNOILOVYSNYYL 3331
9402 9IUBIIS JO gam Woly) NS ‘Bisueqno AA YnApaas 3 Yaouny :Ag

8T :payd sawil . . . _ Bunapow pue sanuadoid 1811430913 [saanXIW dLDBRIA 6



Naputak autorima

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online)
doi

ARTIFICIAL NEURAL NETWORKS MODEL FOR SPRINGBACK PREDICTION IN THE
BENDING OPERATIONS

Original scientific paper
The main purpose of this work is to develop an Artificial Neural Network (ANN) model for spring back prediction in the free cylindrical bending of
metallic sheets. The proposed ANN model was developed and tested under the Mat lab program. The input parameters of the proposed ANN model
consist in the sheet thickness, punch radius, and friction coefficient. The output parameter is the spring back coefficient. Training, testing and validation of
the model were performed using 126 data sets obtained by Finite element analysis (FEA). ANN was trained by Levenberg — Marquardt back —
propagation algorithm. The performance of the ANN model was evaluated using statistic measures. The predictions of the ANN model comparing with
those of FEA had quite low root mean squared error (RMSE) values and the model performed well with the coefficient of determination values. This
shows that the developed ANN model has a good potential to be used as a tool for spring back prediction.

Keywords: spring back, finite element simulation, artificial neural networks.

Model umjetne neuronske mreze za predvidanje elastiénog povrata nakon savijanja

lzvomi znanstveni &lanak
Glavna svrha ovog rada je razviti model umjetne neuronske mreze (ANN) za predvidanje elastiénog povrata pri slobodnom cilindri¢nom savijanju
metalnih limova. PredloZeni ANN model razvijen je i testiran uz pomo¢ Matlab programa. Ulazni parametri predlozenog ANN modela su debljina lima,
polumjer Ziga i faktor trenja.Izlazni parametar je koeficijent elasti¢nog povrata. Obuka, testiranje i validacija modela su provedeni pomocéu 126 skupova
podataka dobivenih pomoéu analize konaénim elementima (FEA). Levenberg - Marquardt iterativni algoritam natrag-naprijed je koriten za treniranje
ANN modela. Uginkovitost ANN modela procijenjena je pomocu statistiékih metoda, Predvidanja ANN modela u usporedbi s onima dobivenom FEA
analizom imala su prilino malu vrijednost pogreike korijena srednjeg kvadrata (RMSE) i model se izvodio dobro s koeficijentom determinacije

vrijednosti. To pokazuje da razvijeni ANN model ima dobar potencijal da bude koriSten kao alat za predvidanje elasti¢nog povrata.

Kljulne rijedi: elasticni povrat, simulacija konacnim elementima, umjetne neuronske mreZe.

1 Introduction

Modelling is a powerful tool in almost all fields of
applications and engineering instead of doing laboratory
tests for saving time and cost. It is widely established that
for modelling large-scale complex processes, soft
computing methodology can be effectively used, since
this technique is basically designed to exploit the
tolerance for imprecision, uncertainty and partial truth.
The evolution of soft computing techniques helps in
understanding various aspects of nonlinear systems and
thereby making it possible to model them besides
predicting their future response [1]. Soft computing is a
collection of methodologies like fuzzy inference system
(FIS), artificial neural networks (ANNs) and genetic
algorithm (GA), designed to tackle imprecision and
uncertainty involved in a complex nonlinear system [2],
[3].

In the last two decades, researchers explored the potential
of artificial neural networks (ANNs) as an analytical
alternative to conventional techniques [4], [5]), which are
often limited by strict assumptions of normality, linearity,
homogeneity, and variable independence [6]. Thus ANN
was used by researchers in different engineering fields to
solve various problems.

Xu [7] developed an ANN model to predict the ultimate
bearing capacity of tubular T-joint under fire. In [6] a
back-propagation neural network and an adaptive neuro-
fuzzy inference system model were developed to predict
the moment capacity of ferro cement members. ANN
models were used in [8] in order to predict the mechanical
properties of ST14 steel in an attempt to save product
quality control costs and time. Zgoul [9] developed an

ANN model for characterizing the rate dependent
behaviour of adhesive materials. The developed model
was used to predict true strain, true stress, strain rate, and
modulus of elasticity under different conditions. Duan et
al. [10] use ANN for predicting the compressive strength
of recycled aggregate concrete prepared with varying
types and sources of recycled aggregates. ANN and
adaptive neuro-fuzzy inference system methods were
employed in [1] in order to make prediction on the
mechanical properties of glass fibre reinforced polymers.
The adaptive neuro-fuzzy inference system and ANN
model were used in [11] for the buckling analysis of
slender prismatic columns with a single non-propagating
open edge crack subjected to axial loads. Baseri et al. in
{12] proposed a fuzzy learning back-propagation
algorithm to predict the spring back in V-die bending
process using the data generated by experimental
observations. The performance of the model in training
and testing is compared with those of the constant
learning rate back-propagation and the variable learning
rate back-propagation algorithms. Liu in [13], developed
a technique based on ANN and a genetic algorithm to
solve the problem of spring back in the U-shaped
bending. Nasrollahi and Arezoo in [14] used the finite
element method (FEM) to simulate the spring back in
wipe bending for perforated components. The results were
used as training data for two artificial neural networks. Fu
in [15] used ANN to predict the punch radius based on the
results of air-bending experiments of sheet metals. A
genetic algorithm was used to optimize the weights of
neural network and then, with the predicted punch radius
and other geometrical parameters of a tool, 2D and 3D
ABAQUS finite-element models were established,
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respectively. Kazan in [16] developed a predictive model
of spring back in wipe-bending processes using ANN
based on FEM to obtain the teaching data.

Spring back is a very important factor that influences the
quality of the bent parts, thus an accurate determination of
this parameter is very important for manufacturers.
Nowadays the time to market and low cost are essential
for any manufacturers to fight concurrence.

Some authors [17] have made diagrams on which the
spring back coefficient can be determined but they are not
universal and cannot be applied in any deformation
circumstances or any material. Experimentally
determination of spring back involves high costs and
time. Finding the methods that fast and accurate predict
the spring back without the need of experimental tests is a
goal for any company that produces parts obtained by
bending operations. Finite element method is often used
in spring back prediction but in some cases especially in
the case of complex parts it may be time consuming.
Therefore, in this paper an artificial neural network model
is proposed as an alternative to solve the spring back
problem prediction in the free cylindrical bending of
metallic sheets. The proposed ANN model is validated in
comparison with FEM results proving its high accuracy
and predictive capabilities.

2 Obtaining data set for spring back coefficient
prediction

In order to obtain the data set for training, validation and
testing of the ANN model, free cylindrical bending
experiments and Finite Element (FE) simulation of the
free cylindrical bending process were performed.

2.1 Experimental procedure

Technological free cylindrical bending experiments
were performed using a free cylindrical bending device
(fig. 1) with 7 different radii of the active elements
10,15,20,25,30,35,40 mm. The bending device was
installed on a universal mechanical testing machine
INSTRON 1196.

Figure 1. Set-up of e bending device.

The tests were performed on rectangular samples
with dimensions of 25x10mm cut from aluminium alloy
EN AW 6016 with the thickness of 1.25mm. The profile

of the bent specimens was measured on a Werth Benchtop
VideoCheck® IP 400 coordinate measuring machine (fig.
2). The measurement results were used to determine the
spring back coefficient.

Figure 2. Coordinate measuring machine

With the device shown above, six bending
experiments for each determination were made and an
average of that six individual values was calculated. The
accuracy of the part after bending was defined from the
spring back coefficient K calculated using Eq.(1) found in
reference (Smith, 1990).

_ R +t/2

=, 1
R+1t/2

Where: R-Part radius, R1- Die radius, t- Thickness of the

sheet metal.

2.2 Finite element analysis

Finite element simulation is justified by the need of
enriching the experimental data to a volume that enables
training, validation and testing of the ANN model.

The Finite Element (FE) simulation of the free
cylindrical bending process of metallic sheets was carried
out using ABAQUS/Standard program. Numerical tests
focused on the investigation of the elastic recovery
dependence on the mechanical properties, the nominal
sheet thickness, bending radius and the friction between
the specimen and active elements of the die. The variable
parameters used for the simulation are as follows:

«  sheet thickness t=0.6; 0.8; 1; 1.25; 1.5; 2 mm;

»  punch radius r;=10; 15; 20; 25; 30; 35; 40 mm;

» friction coefficient p=0.01; 0.09; 0.15.

The methodology consisted in repeating the
simulation of the free cylindrical bending process,
covering a range of values representative for each of the
above-mentioned parameters.
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In order to automatize the simulation tests, a
monitoring program was developed. It repeatedly
launched the program ABAQUS/Standard, providing each
time another set of parameters of the bending process.
Once a numerical test is finished, the monitoring program
extracted from the corresponding output file the
coordinates of two nodes located on the median fibre of
the specimen. More precisely, the coordinate of node 1
located on symmetry axis of the specimen and of node 15
located at the middle of the bent region (fig. 3) were used
for this determination.

iy

=

M

1(0.-}’1)

15(-"15:}'15)

Figure 3. Geometric scheme used for the determination
of the radius after removing the part from the bending die.

Using the coordinates of these nodes shown in fig. 3
we can determine the radius attained after the extraction
of the bent part from the bending die:

R = x5+ (s =) o)
2-(Ohs =y

Having the radius after removing the part from the
bending die the spring back coefficient K is computed
using Eq. 1. Using this methodology, the data sets
obtained by experimental procedure were significantly
increased.

The finite element mesh used to discretize the raw
part had: 26 equidistant nodes and 25 finite elements B21
(Beam clements with two nodes). The active areas of
tools (punch, die) are defined in an analytical manner.
The positions of these tools are controlled by two nodes
of reference. The type of contact between the raw part and
tools is the Coulomb, friction coefficient being the same
for both punch and die.

The hardening law adopted in the simulation was
Swift:

o, = C(go +£p)' 3)

In order to be sure on the correctness and
representatively of the numerical results, the predictions
of the program ABAQUS/Standard were compared with
experimental data previously obtained (fig. 4 and Table
1).

where the relative error (RE) was calculated as
follows:

_ I predicted — exp erimental |

RE 100 [%] 4)

| exp erimental |

Table 1 Comparison of the spring back prediction provided by FE

Simulation and experiments.
Pugch Springback coefficient (-) Relative
radius Experimental FEM error (%)
(mm) P prediction 0
1 10 0,9635 0,9819 1,91
2 15 0,9149 0,9104 0,50
3 20 0,8976 0,9019 0,49
4 25 0,8800 0,8743 0,65
5 30 0,8670 0,8489 2,08
6 35 0,8442 0,8273 2,01
7 40 0,8181 0,8084 1,20

The comparison showed relative errors less than 2,1%
(Table 1), confirming the validity of the simulations.
Therefore the FEA results are sufficiently accurate and
can be used as data set for training and testing the ANN
model.

1.00

—o— FEA
b
0.9 @ Experiment

0.84 4

092 +

0,90 1

088 4

0,86 o

Springback coefficient [-]

0,84 1
082 1 b

0.80 1

078 T — T s T
10 15 20 25 30 35 40

Punch radius fmm)
Figure 4. Spring back coefficient obtained by FEA and
experiments

3 Neural network model for spring back prediction

Artificial neural network is a mathematical model
that can learn and generalize the things learned. It makes
a mapping function from input to output, giving
information about practical phenomena. Because of the
non-linear properties of neural networks, they are suitable
for describing complex non-linear phenomena which
linear modelling techniques fail to describe. Basically, all
the processes that have an adequate number of measured
data can be modelled by ANN [18].

3.1 Data set for ANN

In order to predict the spring back coefficient, the
neural network is developed using Mat lab Software.
Generally, the selection of the network inputs is a difficult
problem. The network outputs are clearly imposed by the
specificity of the problem analysed, whereas the inputs

Tehnicki vjesnik 19, 4(2012), 709-715
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are not. The spring back phenomenon depends on many
factors some of them being strongly correlated. Therefore
in this work to develop the neural network model 3 input
parameters were chosen (sheet thickness, punch radius,
friction coefficient) and one output (spring back
coefficient) directly imposed by the application (target).
All of the input and target of the ANN are called the data
sets.

3.2 ANN architecture

In this paper the developed ANN model consists of
one input layer having 3 neurons, where input data (sheet
thickness, punch radius and friction coefficient) is
presented to the network, one hidden layer and an output
layer with one neuron representing spring back coefficient
of the free cylindrical bent sheet. The structure of the
proposed ANN model is shown in fig. 5.

Hidden
Layer

Springback
coefficient

v

Figure 5 The proposed ANN model for springback prediction

The back-propagation neural network was trained by
107 data sets and tested by 19 data sets. In the training
process the connection weights are assigned in order to
reduce the error between the predicted and actual target
value to a satisfactory level. This process is carried out
through the minimization of the defined error function by
updating the connection weights. The neural network was
trained using Levenberg — Marquardt back-propagation
algorithm. Once the training process is finished the neural
network should be a model able to predict the target value
given the input pattern. After the training of the network
the model with all the parameters including the
connection weights were tested using a data set that was
not used in the training phase. For the tests set, the
deviations of the ANN outputs from the finite element
method (FEM) data (target) were determined using
standard statistical analyses, to evaluate the accuracy of
the proposed ANN model in predicting the spring back
coefficient in the free cylindrical bending process. The
statistical measures used are the root mean squared error
(RMSE) and the coefficient of determination (R2)
calculated using Egs. (5) and (6) as follows:

N
RMSE = %x 2 (a,-p,) (5)

)Y R0 ©
VZat)-(Eaf yn(Zp?)-E

where: a is the actual value from experiments, p is the
predicted value by models and N is the number of
patterns.

The trials showed that the best network
architecture and parameters that maximize the R? values
and minimize the RMSE are as follows:

Number of input layer neurons =3
Number of hidden layers =1
Number of hidden layer neurons=9
Number of output layer neurons =1
Learning rate =0.3

Momentum rate =0.9

3.3 Results

The network has been trained continually through the
updating weights until the error goal is 1.34x107*, The
change of the error performance of the network during the
training process is shown in Fig. 6. The expected value of
the error performance of the network has been reached
after 8 iterations, thus the training of the network is
finished as shown in fig. 6.

Best Validation Performance is 0 00013402 at epoch 8
10 T T T T T

— Train B
Validation []
Test )

Mean Squared Error (mse)

14 Epochs
Figure 6 Mean square error (MSE) of the ANN model

Gradiem = 0 00023562, a1 epoch 14

T T
-2 \ 4
1 1 1 L Il ]

gradient
H

Mu = 1e-005. at epoch 14

K \ X
=l 't 1 1 1 1

Validation Checks = 6. at epoch 14

my
-
o

oy

o ¥

val fail
"
v

°
3
A AT AT A A/ .
18 4 11 B 10 12 14
14 Epochs
Figure 7 The training process of the ANN

712



Naputak autorima

The training process of the neural network is
presented in fig. 7.

The developed model was evaluated by the squared
regression (R2) and root mean squared error (RMSE)
values.

Table 2 Comparison of the actual values with predicted results obtained

from ANN model
No. FEM ANN Relativ error RE
1 0,9753 0,9795 0,0043
2 1,0293 1,0283 0,0010
3 0,9873 0,9874 0,0000
4 0,9031 0,9030 0,0001
5 0,8861 0,9017 0,0176
6 0,8093 0,8027 0,0082
7 0,8601 0,8710 0,0126
8 0,8769 0,8939 0,0194
9 0,6429 0,6565 0,0212
10 0,8503 0,8498 0,0006
11 0,8749 0,8730 0,0021
12 0,8870 0,8907 0,0042
13 0,8190 0,8188 0,0003
14 0,8097 0,8065 0,0039
15 0,8360 0,8324 0,0043
16 1,0460 1,0445 0,0014
17 0,8840 0,8861 0,0025
18 0,9104 0,9262 0,0174
19 0,8743 0,8795 0,0060

Fig. 8 (a,b,c,d) shows the regression (R) analyses of
the data as criteria of model accuracy. The regression
values measure the correlation between outputs and
targets. The following regression plots display the
network outputs with respect to the targets for training,
validation and testing sets. Fig.8a shows the regression
analysis of the training data. The correlation coefficient of
regression analysis of the training data is 0.99496. The
regression analysis of the validating data is shown in Fig.
8b. It can be noticed that the correlation coefficient of
regression analysis of the validating data is 0.99246.

The regression analysis of the testing data is
presented in Fig. 8c. The correlation coefficient of
regression analysis of the testing data is 0.9967. Finally,
Fig. 8d shows the total regression for proposed ANN. In
this case the correlation coefficient of regression analysis
of all the data is 0.99459. All the correlation coefficients
of regression analysis from Fig. 8 have the value close to
1(R value of 1 means a close relationship). It can be
concluded from this fact that the proposed neural network
could learn the relationship between the input parameters
and the output parameter.

In this paper, the performance of the ANN model was
also evaluated by relative error (RE) calculated using Egs.
4).

The results obtained for relative errors (RE) are
shown in Table 2. One may notice that the constructed
ANN model provides good prediction performances being
able to fit most of the spring back coefficient values close
to the target spring back coefficient. All the 19 testing
data sets have relative errors less than 0.0212. This means
that the results obtained by ANN model are in good
agreement with the results obtained by FEM showing the
accuracy of the model.

Traning: R=0 95496 Validation R=0 83246

105
o Daa 085 o Daa &
1 ; h o
© Fit Fit /
I | R Y=1 g oof| Y=7 g
Q 085
5 ? 0.85
s 08 T
g
§ua5 v o8
g H
I o 507
2
3o 8 o7
074 -
07 08 [X] 1 0.7 08 08
Targel Target
Test R=0 9367 All: R=0 93453
1 O Data
= i e
S 095t|------ Y=T 5
2 g
g o :
3 B
o b
g oa g
1 1
§ 075 §
o 07 (<]
0 G
07 08 0.9 1 07 08 08 1
Target Target

Figure 8. The data regression of the proposed ANN model

Fig. 9 presents a graphic comparison between the
ANN output results and the target results obtained by
FEM. 1t can be noticed that the most results predicted by
ANN are very close to the results obtained by FEA
demonstrating that the constructed ANN model is able to
provide prediction of the spring back coefficient close to
that of the FEA values.

The performance of the ANN model can still be
improved by adding more parameters, such as materials
properties.

11

—a— FEA
—— ANN

1,0 4

k-
[
s

F4
®

Springback coefficient

0,7 4

06

T T T I

L L L LS T
01 2 3 4567 8 9 1011 1213 14 15 18 17 18 19 20

Number of test sample
Figure 9. Comparison of the obtained results by ANN with FEA for
spring back coefficient

4 Conclusions

In this study a back-propagation neural network
model is developed to predict the spring back coefficient
in the free cylindrical bending process of metallic sheets.
A database of 126 tests obtained from FEM is used for
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training and testing this model, and 3 variables are
selected as inputs to ANN model.

The proposed ANN model for characterizing the
spring back phenomenon in the free cylindrical bending
process of metallic sheets was successfully developed and
used to predict the spring back coefficient. Results shown
that the performances of the developed model are at a
high level of accuracy judging against the root mean
square error and the regression value.

A good agreement has been noticed between the
predicted values by ANN and the targets values obtained
by FEM. The computation time had significantly reduced
using ANN model which is very important for bent parts
manufacturers. Therefore the use of ANN technique in
combination with FEM reduces time and cost of required
experiments.

The approach proposed by the authors is able to
provide accurate predictions, as proved by the comparison
with experimental and FE results. In the future research,
the authors intend to improve the ANN capabilities by
adding more input parameters.
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